

Il sistema numerico decimale

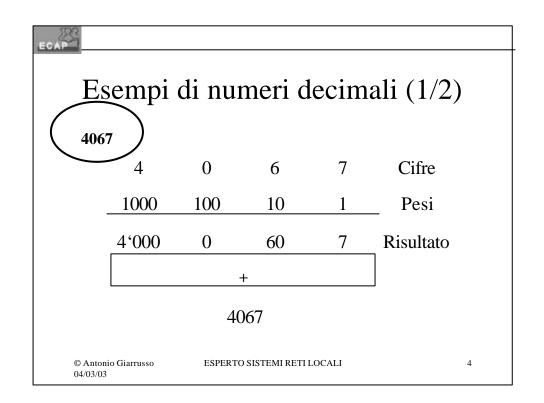
© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

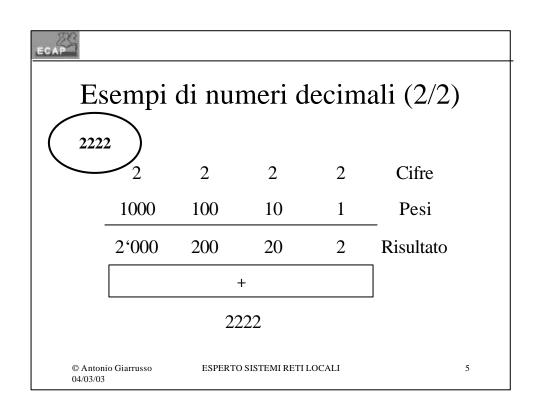
1

Il sistema numerico decimale

- Il sistema numerico di uso corrente è decimale e posizionale;
- Decimale perchè formato da 10 cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
- Posizionale perchè il valore di ogni cifra nel numero si ottiene moltiplicando la cifra per una potenza del 10 (10⁰, 10¹, 10², 10³...) a seconda della posizione occupata nel numero, a partire da destra;
- Il valore del numero si ottiene sommando tutte le cifre ognuna moltiplicata per il proprio peso.

© Antonio Giarrusso 04/03/03


ESPERTO SISTEMI RETI LOCALI



Pesi decimali

Posizione (destra verso sinistra!)	Quinta	Quarta	Terza	Seconda	Prima
Peso	10 ⁴ (10'000)	10 ³ (1'000)	10 ² (100)	10 ¹ (10)	10 ⁰ (1)

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Sistema numerico romano: un sistema non posizionale!

Un paragone storico

Sistema numerico romano:

Additivo ma non posizionale! Al posto di dieci cifre innumerevoli simboli:

I=>1, V=> 5, X=>10, C=>100, D=> 500, M=>1000

XXII = 10 + 10 + 1 + 1 = 22

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Il sistema numerico binario

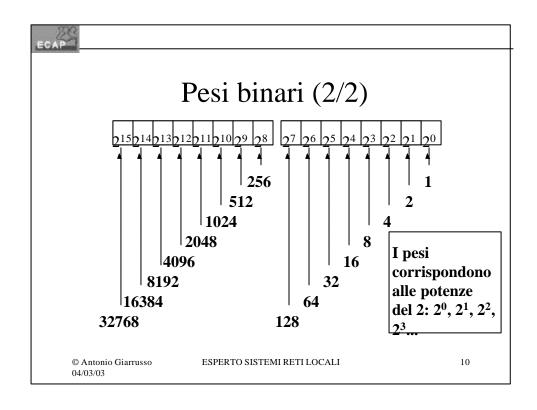
© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

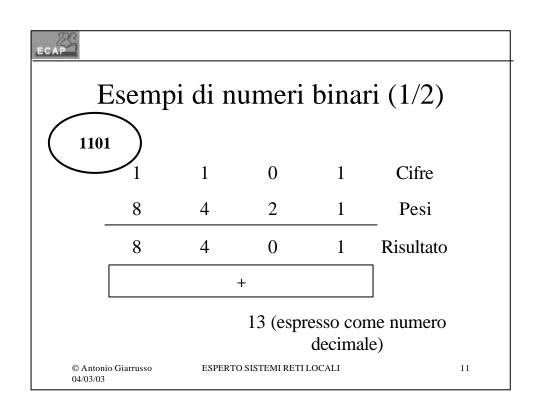
7

Il sistema numerico binario

- E' il sistema numerico adoperato dai calcolatori elettronici e da molti altri sistemi digitali;
- Binario perchè formato da 2 cifre: 0, 1 (si usa il termine bit, abbreviazione di BInary digiT);
- Posizionale perchè il valore di ogni cifra nel numero si ottiene moltiplicando la cifra per una potenza del 2 (2º, 2¹, 2², 2³...) a seconda della posizione occupata nel numero, a partire da destra;
- Il valore del numero si ottiene sommando tutte le cifre ognuna moltiplicata per il proprio peso.

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI




Pesi binari (1/2)

Posizione (destra verso sinistra!)	Quinta	Quarta	Terza	Seconda	Prima
Peso	2 ⁴ (16)	2 ³ (8)	2 ² (4)	21 (2)	2 ⁰ (1)

© Antonio Giarrusso 04/03/03

ESPERTO SISTEMI RETI LOCALI

Il sistema numerico esadecimale

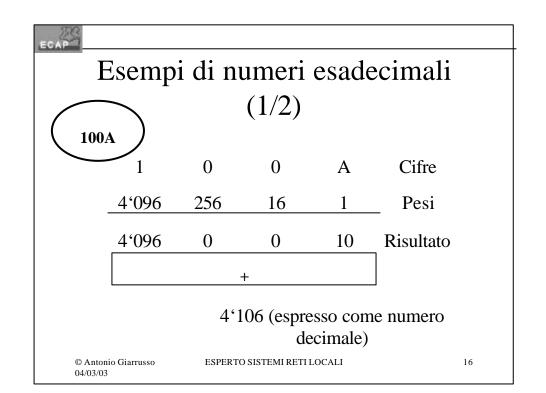
© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

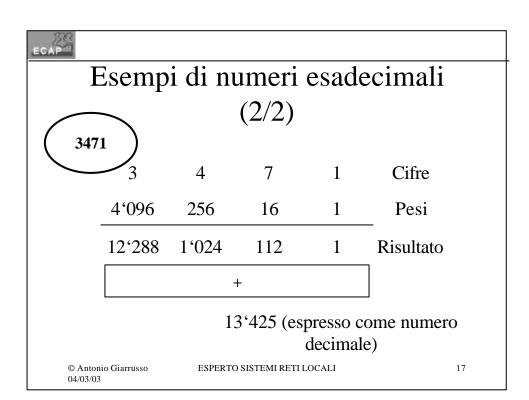
13

Il sistema numerico esadecimale

- Esadecimale (dal greco sedici) perchè formato dalle cifre decimali (0, 1, 3, 4, 5, 6, 7, 8, 9) e dalle cifre A, B, C, D, E, F per i numeri da 10 a 15;
- Posizionale perchè il valore di ogni cifra nel numero si ottiene moltiplicando la cifra per una potenza del 16 (16⁰, 16¹, 16², 16³...) a seconda della posizione occupata nel numero, a partire da destra;
- Il valore del numero si ottiene sommando tutte le cifre ognuna moltiplicata per il proprio peso.

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI




Pesi esadecimali

Posizione (destra verso sinistra!)	Quinta	Quarta	Terza	Seconda	Prima
Peso	16 ⁴ (65'536)	16 ³ (4'096)	16 ² (256)	16 ¹ (16)	16 ⁰ (1)

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

1.5

ECAP

Trasformazioni tra sistemi numerici

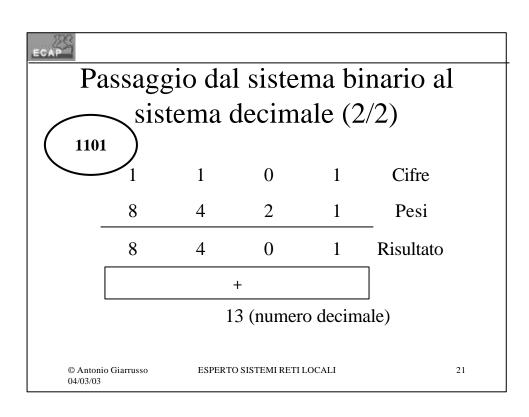
© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Paragone dei tre sistemi

	Decimale	Binario	Esadecimale
	0	0000	0
	1	0001	1
	2	0010	2
	3	0011	3
	4	0100	4
	5	0101	5
	6	0110	6
	7	0111	7
	8	1000	8
	9	1001	9
	10	1010	A
	11	1011	В
	12	1100	С
	13	1101	D
	14	1110	E
	15	1111	F
o Giarrusco	E	SDEDTO SISTEMI DETI I O	TALL

© Antonio Giarrusso 04/03/03

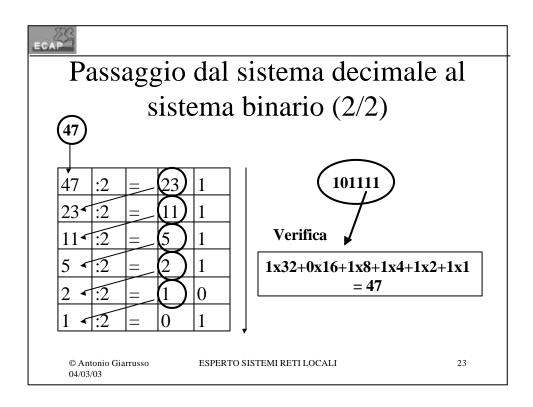
ESPERTO SISTEMI RETI LOCALI


19

Passaggio dal sistema binario al sistema decimale (1/2)

• Si moltiplicano le cifre binarie ciascuna per il proprio peso e si sommano

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI



ECAP

Passaggio dal sistema decimale al sistema binario (1/2)

- Si divide il numero decimale ripetutamente per 2 fino ad ottenere il quoziente 0 e si considerano i resti ottenuti.
 - La sequenza dei resti costituisce il numero espresso in cifre binarie;

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

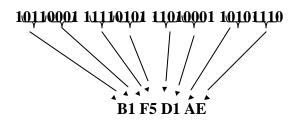
ECAP

Passaggio dal sistema binario al sistema esadecimale (1/3)

- Si raggruppano le sequenze di cifre binarie in gruppi di 4 a partire dalla destra (queste sequenze hanno valori numerici tra 0 e 15);
- Si sostituisce ad ogni valore numerico la corrispondente cifra esadecimale;

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Passaggio dal sistema binario al sistema esadecimale (2/3)


Insieme 4 bit	Cifra esadecimale	Valore
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	C	12
1101	D	13
1110	E	14
1111	F	15

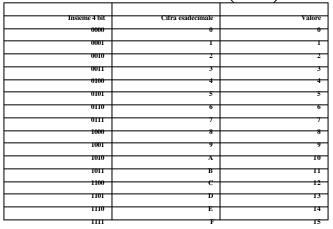
© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

25

Passaggio dal sistema binario al sistema esadecimale (3/3)

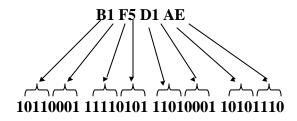
© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Passaggio dal sistema esadecimale al sistema binario (1/3)


• Si sostituisce ad ogni valore esadecimale la corrispondente quaterna di cifre binarie, iniziando come sempre a destra;

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

2

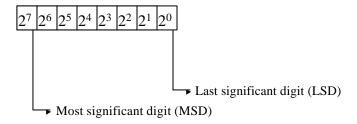

Passaggio dal sistema esadecimale al sistema binario (2/3)

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Passaggio dal sistema esadecimale al sistema binario (3/3)

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

29


Considerazioni su bit e byte

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Il byte (1/2)

• Il byte rappresenta l'insieme di 8 bits (a volte si incontra il termine ottetto);

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

3

Il byte (2/2)

- Un byte (8 bit) puo' assumere 256 (28) differenti valori:
 - Un bit puo' assumere 2 valori [0,1];
 - Due bit possono assumere 4 valori [00, 01, 11, 11];
 - Tre bit possono assumere 8 valori [000, 001, 010, 011, 100, 101, 110, 111];
 - Otto bit possono assumere 256 valori [00000000...11111111];
- Piu' in generale una sequenza di n bit puo' assumere 2ⁿ differenti valori.

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Multipli del bit e del byte (1/5)

- Per indicare in maniera sintetica grandezze fisiche molto grandi si usano i termini:
 - Kilo per 1'000 (un migliaio di unità);
 - Mega per 1'000'000 (un milione di unità);
 - Giga per 1'000'000'000 (un miliardo di unità);
- Esse sono radicate nell'uso del dieci nella fisica e nelle scienze esatte in generale;

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

33

Multipli del bit e del byte (2/5)

- In informatica dove si opera in termini binari si preferiscono delle definizioni differenti, basate sull'uso di potenze del 2:
 - Kilo per indicare 1'024 (2¹⁰);
 - Mega per indicare 1'048'576 (2²⁰);
 - Giga per 1'073'741'824 (2³⁰);

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Multipli del bit e del byte (3/5)

	Fisica	Informatica
Kilo	1'000 (10 ³)	1'024 (2 ¹⁰)
Mega	1'000'000 (106)	1'048'576 (2 ²⁰)
Giga	1'000'000'000 (10 ⁹)	1'073'741'824 (2 ³⁰)

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

35

Multipli del bit e del byte (4/5)

KBit (KB)	1'024 Bit
	1'048'576 Bit
Mbit (MB)	(circa un milione di
	1'073'741'824 Bit
Gbit (GB)	(circa un miliardo di Bit)

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Multipli del bit e del byte (5/5)

KByte	1'024 Byte
	1'048'576 Byte
MByte	(circa un milione di Byte)
GD.	1'073'741'824
GByte	Byte (circa un miliardo di Byte)

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

37

I codici

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

I codici per rappresentare i caratteri

- Codice ASCII (American Standard Code for Information Interchange);
 - 8 bit per rappresentare nel calcolatore caratteri e per simboli speciali;

© Antonio Giarrusso 04/03/03

ESPERTO SISTEMI RETI LOCALI

39

La crittografia

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Cifrare (1/4)

- Mediante la cifratura un testo ("testo in chiaro") viene trasformato in un "testo cifrato";
- La cifratura viene fatta usando procedimenti di grande complessità matematica ma che possono essere ricondotti all'uso di una chiave;
- Il testo puo' essere decifrato solo da chi è in possesso del cifrario cioè della chiave;

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

4

Cifrare (2/4)

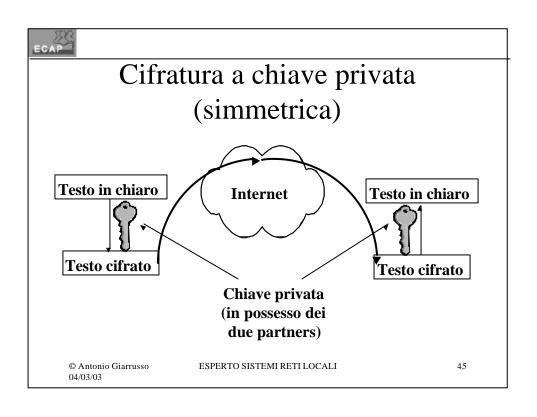
- Giulio Cesare pare abbia usato un codice che sostituiva ad ogni cifra quella che veniva 3 posti dopo nell'alfabeto:
 - $-a \rightarrow D, b \rightarrow E, c \rightarrow F,...z \rightarrow C;$
- Con il cifrario "Giulio Cesare" la parola "attacco" diventa "DWWDFFR";
- Un altro esempio di cifrario è sul lucido (3/4)

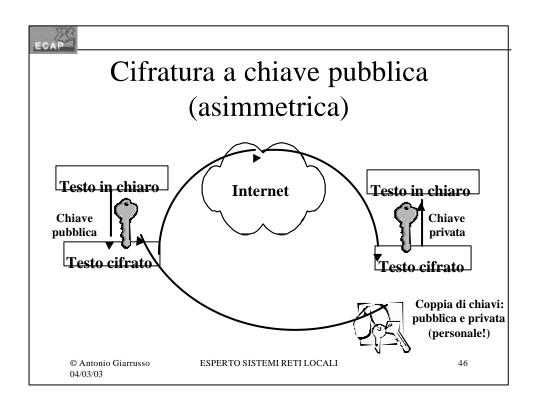
© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

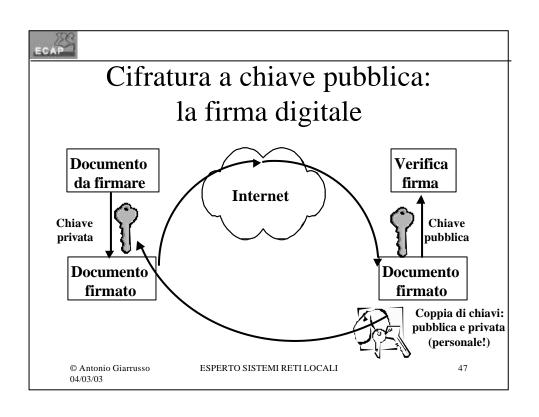
Cifrare (3/4)

chiaro	cifrato	chiaro	cifrato	chiaro	cifrato
a	Q	j	P	s	L
b	W	k	A	t	Z
с	Е	1	S	u	X
d	R	m	D	v	С
e	Т	m	F	W	V
f	Y	0	G	X	В
g	U	р	Н	у	N
h	I	q	J	z	M
i	О	r	K		

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI


43




Cifrare (4/4)

• Con il cifrario della slide (3/4) la parola "attacco" diventa "QZZQEEG";

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Operazioni logiche

- Le operazioni logiche operano su singoli bit;
- Le operazioni logiche piu' usate sono AND, OR, XOR, NOT;
- Le operazioni logiche sono definite per il tramite di "tavole di verità".

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

49

AND

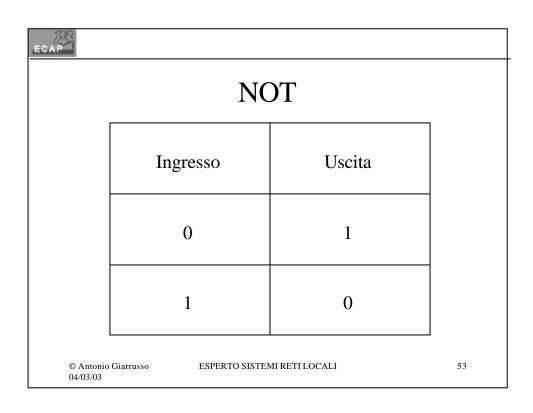
Ingresso A	Ingresso B	Uscita
0	0	0
0	1	0
1	0	0
1	1	1

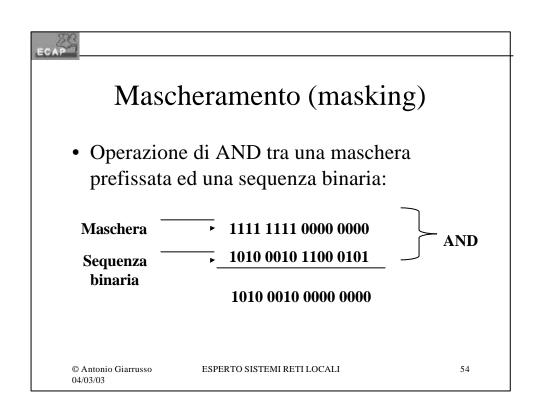
© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

OR

Ingresso A Ingresso B		Uscita
0	0	0
0	1	1
1	0	1
1	1	1

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI


51



XOR

Ingresso A	Ingresso B	Uscita
0	0	0
0	1	1
1	0	1
1	1	0

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Gli insiemi

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

55

Insiemi (1/3)

- Da un punto di vista matematico è un concetto "primitivo", che non puo' essere ulteriormente definito;
- Sinonimi di "insieme" nel linguaggio ordinario sono termini come "famiglia" o "collezione" di oggetti;

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Insiemi (2/3)

- Esempi di insiemi:
 - Insieme numeri pari su facce dado {2, 4, 6};
 - Insieme numeri dispari su facce dado {1, 3, 5};
 - Insieme semi carte napoletane: {ori, bastoni, spade, coppe};
 - Insieme numeri interi {1, 2,3,};

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

57

Insiemi (3/3)

- Importanti definizioni:
 - I componenti di un insieme sono detti "elementi" dell'insieme;
 - "Cardinalità" di un insieme e' il numero degli oggetti facenti parte di un insieme


Osservazione importante: Esistono insiemi finiti (formati da un numero finito di elementi) e insiemi infiniti.

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Operazioni sugli insiemi (1/4)

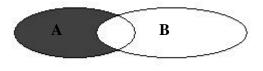
• Unione di due insiemi: Insieme formato dagli elementi che appartengo all'uno o all'altro insieme

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

50

Operazioni sugli insiemi (2/4)

• Intersezione di due insiemi: Insieme formato dagli elementi che appartengo ad ambedue gli insiemi


АÇВ

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Operazioni sugli insiemi (3/4)

• Differenza di due insiemi: elementi che appartengono ad A ma non contemporaneamente ad A e B

A - **B**

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

6

Operazioni sugli insiemi (4/4)

• Differenza simmetrica di due insiemi: elementi che appartengono ad A o B ma non contemporaneamente ad A e B

ADB

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI

Compressione

- Comprimere un file significa ridurre lo spazio di memoria occupato da un file;
- Gli algoritmi di compressione sfruttano tecniche matematiche sofisticate ma il principio è semplice: sfruttare la struttura dei dati (ridondanza dell'informazione);
- Compressione puo' essere utilizzato all'interno di un disco rigido o ad esempio per inviare allegati di una e-mail.

© Antonio Giarrusso 04/03/03 ESPERTO SISTEMI RETI LOCALI